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Summary

This paper presents a deterministic procedure for tailoring the continuum sti�ness and

strength of uniform space-�lling truss structures through the appropriate selection of truss

geometry and member sizes (i.e., exural and axial sti�nesses and length). The trusses considered
herein are generated by uniform replication of a characteristic truss cell. The repeating cells are

categorized by one of a set of possible geometric symmetry groups derived using crystallographic

techniques. The elastic symmetry associated with each geometric symmetry group is identi�ed

to help select an appropriate truss geometry for a given application. Sti�ness and strength

tailoring of a given truss geometry is enabled through explicit expressions relating the continuum

sti�nesses and failure stresses of the truss to the sti�nesses and failure loads of its members.

These expressions are derived using an existing equivalent continuum analysis technique and a

newly developed analytical failure theory for trusses. Several examples are presented to illustrate

the application of these techniques and to demonstrate the usefulness of the information gained

from this analysis.

Introduction

In the future, the primary structures of many large orbiting spacecraft will be lightweight

trusses. Although numerous studies have been performed to determine the feasibility and

structural characteristics of these trusses (e.g., refs. 1 through 3), little work has been done to

establish deterministic procedures for their design. The selection of appropriate truss designs is

inuenced by both structural optimization and spacecraft operational considerations. Currently,

structural optimization of these trusses is a predominantly heuristic process involving trial and

error procedures. This paper presents a deterministic procedure for truss geometry selection

and member design based on tailoring the continuum sti�ness and strength characteristics of

the truss. Analysis of the truss sti�ness and strength characteristics is performed using an

equivalent continuum analogy (ref. 4). This approach is preferred because it o�ers better insight

into structural behavior than the conventional numerical analysis techniques o�er.

The trusses considered herein are generated by uniform rotational and/or translational

replication of a characteristic cell, as shown in �gure 1, and they are thus called uniform space-

�lling trusses. In most cases, the repeating truss cell and the resulting truss structure inherently

possess some geometric symmetry. The presence of geometric symmetry implies elastic symmetry

that reduces the number of independent equivalent elastic constants characterizing the truss. In

this study, the crystallographic techniques are used to de�ne the possible geometric symmetry

groups associated with repeating cells that generate uniform trusses. In addition, the number

of independent elastic constants associated with each geometric symmetry group is identi�ed to

help select an appropriate truss geometry for a given application.

The independent elastic constants characterizing a truss can be tailored to speci�c values

by selecting appropriate member sti�nesses. In the present study, this sti�ness tailoring is

accomplished using explicit relationships between the equivalent continuum sti�nesses of a truss

and the axial sti�nesses of its members. Also, the continuum strength characteristics of a truss

are tailored using a strength tensor that is written explicitly in terms of the local elastic buckling

loads of the truss members. To illustrate the application of these techniques, a commonly used

truss geometry is analyzed to determine member sizes that produce optimum isotropic and

orthotropic (i.e., one direction of high sti�ness and strength) designs.

All derivations presented have been performed symbolically using a computerized mathemat-

ics routine (ref. 5), and results have been converted into a numerical form when necessary. The

advantage in using symbolic algebra is that explicit relationships can be determined between the

design parameters and the continuum elastic behavior of the truss. These explicit relationships

signi�cantly enhance the utility of the sti�ness and strength tailoring procedures presented.
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Symbols

A cross-sectional area of members in regular octahedral truss

Ac cross-sectional area of members in cubic lattice of Warren truss

An cross-sectional area of members in nth group

Ao cross-sectional area of members in octahedral lattice of Warren truss

Cijkl continuum elastic sti�nesses (tensor form)

C0

ijkl
transformed continuum elastic sti�nesses

(C0

1111)n continuum unidirectional sti�ness for nth group of parallel members

cmn continuum elastic sti�nesses (matrix form)

E Young's modulus of truss material

Eeq equivalent continuum Young's modulus

(Eeq)iso equivalent Young's modulus of isotropic Warren truss

(Eeq)z equivalent z-direction Young's modulus

Geq equivalent continuum shear modulus

L characteristic dimension of truss repeating cell

ln length of members in nth group

rn radius of gyration of members in nth group

Sijkl continuum elastic compliances (tensor form)

smn continuum elastic compliances (matrix form)

Tij coordinate transformation tensor

vn volume fraction of nth group of parallel members

x; y; z Cartesian coordinates

x0 member longitudinal direction

� length ratio of repeating truss cell in z direction

�c ratio of cross-sectional areas of members in Warren truss

�n ratio of cross-sectional areas of members in nth group to that of �rst
group

"ij strain tensor

"0
ij

transformed strain tensor

("crit)n critical axial strain for nth group of members

�eq equivalent continuum Poisson's ratio

� density of truss material

�eq equivalent continuum density

�ij stress tensor

�ult continuum compression strength
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(�ult)z z-direction compression strength

(�ult)iso compression strength of isotropic Warren truss

�i direction cosine with the ith coordinate axis

�; ' spherical coordinates

[
kl]n strength tensor

Truss Geometry Selection

The design of a truss is often governed by considerations other than the structural perfor-

mance (e.g., as shown in ref. 6). For example, operational concerns such as the arrangement and

integration of spacecraft subsystems onto a truss might dictate a particular geometry for the

truss repeating cell. For applications in which operational concerns do not dominate, selecting a

truss geometry by matching its inherent elastic behavior with the structural requirements of the
spacecraft is prudent. Even in situations in which operational concerns prevail, enough latitude

probably exists in the selection of a truss geometry so that structural considerations can be

incorporated. This section categorizes the elastic characteristics of most uniform space-�lling

truss structures by examining their geometric symmetry.

The uniform truss structures considered herein are similar to crystalline lattices because

they both can be generated by replicating a characteristic repeating cell that typically possesses

geometric symmetry. Of interest are symmetry with respect to speci�c rotations about one or

more axes and symmetry with respect to reection about one or more planes. Symmetry in the

truss geometry (i.e., lattice arrangement and member designs) implies symmetry in the elastic

characteristics of the truss. This implied elastic symmetry reduces the number of independent

equivalent elastic constants characterizing the continuum behavior of the truss, and it thus

simpli�es the task of sti�ness and strength tailoring.

Rotational Symmetry Groups

Crystallographic studies (refs. 7 and 8) have shown that the rotational and reectional

symmetries in reticulated, or discrete, structures are limited to a set of 32 possible combinations

that are commonly called crystallographic symmetry groups. Love (ref. 9) determined that the

elastic behavior of most crystallographic symmetry groups can be derived by considering only
rotational symmetry. For brevity, the few cases in which reectional symmetry is important are

not considered herein. By neglecting reectional symmetry, the 32 crystallographic symmetry

groups reduce to the 10 rotational symmetry groups shown in �gure 2.

Each symmetry group in �gure 2 is identi�ed by a speci�c combination of axes about which

rotational symmetry exists. The orientations of these axes are shown relative to a Cartesian

coordinate system, and the order of rotational symmetry is given by one of four graphical

symbols: a cusped oval, a triangle, a square, or a hexagon. These symmetry symbols are related

to the order of symmetry in the key. This order of symmetry is de�ned as n-gonal where the

rotation angle is 2�=n and n is either 2, 3, 4, or 6. Notice that in symmetry groups i and j,

the trigonal symmetry axes lie along lines connecting the center of a cube with its corners, thus

structures of these symmetry groups are often referred to as cubic structures.

Symmetry groups that possess more than one axis of rotational symmetry are called

multiaxial. The three rotational symmetry axes presented for each of the multiaxial groups

are not the only symmetry axes for those groups. A complete set can be generated by applying

the symmetry operation of each axis to the others. For example, in symmetry group d, applying

trigonal symmetry about the z-axis identi�es four additional digonal symmetry axes separated

by 60� in the x-y plane.
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Any truss structure that possesses axes of rotational symmetry can be categorized by one of
the 10 rotational symmetry groups in �gure 2. This classi�cation is accomplished by identifying

all rotational symmetry axes within the structure and then by selecting a Cartesian coordinate

system relative to these axes which matches one of the given symmetry groups. Once the

symmetry group of the truss is identi�ed, its inherent elastic behavior is determined using the

methods that follow.

Elastic Characteristics of Rotational Symmetry Groups

A uniform truss structure can be represented by an equivalent homogeneous anisotropic

continuum characterized by 21 empirical elastic constants. These elastic constants appear as

sti�nesses cmn or Cijkl in the constitutive equations given in equation (1a) in matrix form and
equation (1b) in tensor form:

8>>>>>>>>>><
>>>>>>>>>>:

�11

�22

�33

�23

�13

�12

9>>>>>>>>>>=
>>>>>>>>>>;

=

2
66666666664

c11 c12 c13 c14 c15 c16

c12 c22 c23 c24 c25 c26

c13 c23 c33 c34 c35 c36

c14 c24 c34 c44 c45 c46

c15 c25 c35 c45 c55 c56

c16 c26 c36 c46 c56 c66

3
77777777775

8>>>>>>>>>><
>>>>>>>>>>:

"11

"22

"33

2"23

2"13

2"12

9>>>>>>>>>>=
>>>>>>>>>>;

(1a)

�ij = Cijkl "kl (1b)

When the truss possesses geometric symmetry, elastic symmetry is implied, which reduces the

number of independent continuum elastic constants.

A continuum that possesses geometric symmetry with respect to a rotational or a reective

transformation (characterized by Tij) also possesses symmetry in its elastic constants (see, for

example, ref. 10). Therefore, the transformed sti�ness tensor C0

ijkl
must be identical to the

original tensor Cijkl. Hence,

C0

ijkl
= CmnopTimTjnTkoTlp = Cijkl (2)

The number of independent elastic constants associated with each symmetry group, presented

in �gure 2, is determined using equation (2). A transformation tensor Tij is determined for

the speci�ed rotation about each symmetry axis and substituted into equation (2) to give 21

conditions on the sti�nesses Cijkl. Some of these conditions are identically satis�ed, whereas

others can be satis�ed only by the elimination or restriction of certain elastic constants. This

process is repeated for all rotational symmetry axes in the given symmetry group, and the

resulting reduced set of elastic constants de�nes the continuum elastic characteristics of any

truss structure that is a member of that symmetry group.

For example, the independent elastic constants characterizing trusses of symmetry group a

are determined by enforcing elastic symmetry with respect to a rotation of 180� about the z-axis.

The transformation matrix for this rotation is

Tij =

2
64
�1 0 0

0 �1 0

0 0 1

3
75 (3)
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Substituting equation (3) into equation (2) gives the following result:

Cijkl = Cijkl (4a)

if an even number (or none) of the indices is 3 and

Cijkl = �Cijkl (4b)

if an odd number of the indices is 3. Satisfying equation (4b) requires the following to be true

(note that, because of symmetry in Cijkl, many possible permutations of the subscripts have

been omitted):

C1123 = C1113 = C2223 = C2113 = C3323 = C3313 = C2312 = C1312 = 0 (5)

Employing the usual conversion from tensor to matrix form (ref. 10), the following equivalent

conditions exist for the components of the sti�ness matrix:

c14 = c15 = c24 = c25 = c34 = c35 = c46 = c56 = 0 (6)

Similar calculations can be made for the remaining symmetry groups in �gure 2. Without

presenting the details, the conditions on continuum sti�nesses as well as the number of

independent elastic constants for each symmetry group are presented in table I. A similar

derivation shows that the conditions presented in table I must also be obeyed by the components

of the continuum compliance tensor.

An obvious conclusion from table I is that the presence of any symmetry in a truss lattice

signi�cantly reduces the number of independent elastic constants characterizing its continuum

behavior. This result greatly simpli�es the task of tailoring the sti�ness and strength of most

trusses. Remember that the conditions on the elastic constants presented in table I are valid

only for the coordinate axes presented in �gure 2. For example, symmetry groups b; f; g; h; i;

and j are indicated to have zero shear coupling sti�nesses (e.g., c14; c15; and c16) in the given

coordinate system, but they might have nonzero coupling sti�nesses in an alternate coordinate

system. As explained by Rosen and Shu (ref. 11), and seen in table I, none of the permissible

geometric symmetry groups possesses su�cient symmetry to ensure isotropic elastic behavior.

However, this research shows that isotropy can be obtained by tailoring the relative sti�nesses

of di�erent truss members.

The information in table I should help select appropriate truss geometries for particular

truss applications and determine additional sti�ness tailoring requirements for the selected truss

geometry. For example, if the primary loads in a truss are expected to occur in only one

direction, considering geometries that have less symmetry and which can easily be tailored to

have signi�cantly higher sti�nesses and strengths in that direction (i.e., an orthotropic design)

is more e�cient. However, for a structure that may have to sustain loads in multiple directions

or one for which the loading conditions are not well-de�ned, considering truss geometries that

possess more symmetry and which can be tailored to behave isotropically may be best.

Sti�ness and Strength Tailoring

Once a truss geometry has been selected, its independent elastic constants are identi�ed using

table I. The values of these constants can be adjusted for a particular application by tailoring

the relative axial sti�nesses of the members comprising the truss. Likewise, changing the relative

elastic buckling loads of di�erent members alters the equivalent continuum strengths of the truss.

Changing only the dimensions and member sti�nesses of a truss which do not violate its geometric
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symmetry causes it to remain in the same rotational symmetry group; thus, the conditions
on its continuum sti�nesses given in table I remain valid. Alternatively, changing dimensions

and member sti�nesses of a truss which violate its geometric symmetry changes its rotational

symmetry group, thus altering the number of independent elastic constants characterizing its

behavior. Sti�ness and strength tailoring will be demonstrated for a truss in which geometric

symmetry is maintained and one in which geometric symmetry is altered.

Equivalent Continuum Elastic Constants

Once a candidate truss for sti�ness tailoring is selected, its continuum sti�nesses are

calculated in terms of the axial sti�nesses of its members. The approach used in this study

for calculating these sti�nesses was developed by Nayfeh and Hefzy (ref. 12); this approach is

similar to a three-dimensional generalization of classical laminated plate theory (ref. 13) in which

groups of parallel members within the truss are analogous to individual lamina. Because truss

members carry only axial loads, each group of parallel members forms a unidirectional elastic

continuum that has no transverse or shearing sti�nesses. The truss assemblage sti�nesses are

obtained by summing the sti�nesses of each of the groups of parallel members. This superposition

of sti�nesses implies that the continuum displacement �eld within a truss is single-valued, which

is consistent with the fact that truss members connected at a common point must have the same

displacement at that point. Note that this is not the case for trusses with cross-laced members

that can slide relative to one another; therefore, such designs should not be analyzed using the

techniques of this study.

Each group of parallel members is characterized by one nonzero equivalent sti�ness that is

in the local x0 direction (the member longitudinal direction). This equivalent unidirectional

sti�ness is determined in equation (7) for the nth group of members:

(C0

1111)n = Evn (7)

where E is the Young's modulus of the truss material in the members and vn is the volume

fraction of the group of members (i.e., the ratio of the total volume of material in the members

to the total volume of the truss).

The continuum sti�nesses for a truss are calculated by transforming the unidirectional

sti�nesses for each of its groups of parallel members into a global coordinate system using

equation (2) and by summing the results, as indicated by

Cijkl =
X
n

(C0

1111)n(T1iT1jT1kT1l)n (8)

Elements of the �rst row of the transformation tensor T1i are simply the direction cosines between

the longitudinal axis of the members and the ith coordinate axis. Therefore, equation (8) can

be rewritten as

Cijkl =
X
n

(C0

1111)n(�i�j�k�l)n (9)

where �i is the ith direction cosine of the members. The continuum sti�nesses de�ned by

equation (9) are explicit functions of the member extensional sti�nesses. These functions

enable the desired continuum sti�ness characteristics to be translated into member axial sti�ness

tailoring rules.

Equation (9) produces additional restrictions on the continuum sti�nesses of uniform trusses

which should be noted. Employing the usual conversion from the matrix form of the elastic
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constants to the tensor form (ref. 10), the values for the transverse and shear sti�nesses c12 and
c66 are

c12 = C1122 =
X
n

(C0

1111)n(�
2
1�

2
2)n (10)

c66 = C1212 =
X
n

(C0

1111)n(�
2
1�

2
2)n (11)

Thus,

c12 = c66 (12)

Similarly,

c13 = c55 c23 = c44 c45 = c36 c25 = c46 c14 = c56 (13)

Remember that these identities must be valid for any uniform space-�lling truss, regardless of

its geometry, and therefore these identities should be added to those already presented in table I

for all symmetry groups. Thus, under these assumptions, a generally anisotropic space-�lling

truss structure has only 15 independent elastic constants rather than the 21 that are normal for

a generally anisotropic solid.

Trusses that are tailored to behave as isotropic continua can be characterized by two elastic

constants, an equivalent continuum Young's modulus Eeq and an equivalent continuum Poisson's

ratio �eq. Writing the sti�nesses in equation (12) in terms of these equivalent constants gives

the following condition:

�eqEeq

(1 + �eq)(1� 2�eq)
=

Eeq

2(1 + �eq)
(14)

Solving equation (14) for �eq gives the result that �eq is equal to 1/4. Therefore, any uniform

three-dimensional space-�lling truss structure that is globally isotropic must have an equivalent

Poisson's ratio equal to 1/4, and, thus, it has only one remaining independent elastic constant,

which is its equivalent Young's modulus. Using a similar procedure, the two-dimensional space-

�lling trusses that behave isotropically must have an equivalent Poisson's ratio of 1/3.

Equivalent Sti�ness-to-Density Ratio

Sti�ness-to-density ratios are commonly used as indicators of the e�ciency of materials.

Likewise, equivalent sti�ness-to-density ratios are useful indicators of the e�ciency of uniform

trusses. Most equivalent truss sti�ness-to-density ratios are dependent on the design of the truss.

However, an equivalent sti�ness-to-density ratio that is only a function of the modulus-to-density

ratio of the parent material will be shown to exist.

In equation (15), a sum of equivalent continuum sti�nesses for a truss is shown to be equal to

the sum of the uniaxial sti�nesses of its individual groups of members. Notice that the direction

cosine terms drop out because the sum of the squares of the three direction cosines for any

member is equal to one.
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c11 + c22 + c33 + 2c23 + 2c13 + 2c12 = C1111+ C2222+ C3333+ 2C2233+ 2C1133+ 2C1122

=
X
n

(C0

1111)n(�
4
1 + �42 + �43 + 2�22�

2
3 + 2�21�

2
3 + 2�21�

2
2)n

=
X
n

(C0

1111)n(�
2
1 + �22 + �23)

2
n

=
X
n

(C0

1111)n (15)

The equivalent density of a space-�lling truss is determined by multiplying the density of

the parent material � by the sum of the volume fractions of all groups of parallel members.

Considering equation (7), this relationship can be written as

�eq = �
X
n

vn =
�

E

X
n

(C0

1111)n (16)

Dividing equation (15) by equation (16) gives the following equivalent sti�ness-to-density ratio:

c11 + c22 + c33 + 2c23 + 2c13 + 2c12

�eq
=

E

�
(17)

Equation (17) is a unique relationship because it provides a direct correlation between an
equivalent continuum sti�ness-to-density ratio of the truss and the modulus-to-density ratio

of the parent material in the truss members. Once the parent material is de�ned for a truss,

equation (17) provides a direct relationship between the equivalent anisotropic sti�ness of a truss

and its equivalent density. This relationship can be used in a number of ways. For example,

changes in the continuum sti�nesses because of sti�ness tailoring of the truss members can be

directly translated into a proportional change in the equivalent density of the truss. Similarly,

requiring the sum of the continuum sti�nesses in the numerator of equation (17) to be constant

during sti�ness tailoring results in the equivalent density remaining constant. This requirement

allows the e�ects of material redistribution within a truss lattice to be conveniently studied.

Equation (17) can be simpli�ed for trusses that are tailored to be globally isotropic. Without

presenting details, equation (17) reduces to the following equation by writing the equivalent

continuum sti�nesses in terms of an equivalent Young's modulus and Poisson's ratio (equal to
1/4):

Eeq

�eq
=

1

6

E

�
(18)

The signi�cance of equation (18) is that all uniform space-�lling trusses that are globally isotropic

must have the same equivalent modulus-to-density ratio regardless of their geometries or member

sizes. Furthermore, this modulus-to-density ratio must be exactly 1/6 of the modulus-to-density

ratio of the parent material.

Equivalent Continuum Strength Tensor

The continuum strength of a truss structure is de�ned herein as the maximum continuum

stress that the truss can sustain before any of its members buckle elastically. This failure mode,

which is a local phenomenon within the truss lattice, will have one of two e�ects on the continuum

behavior of the truss. If redundant members exist and load is redistributed, local buckling will

cause a change in the continuum sti�nesses of the truss. However, if no load redistribution takes

8



place, local buckling will precipitate a catastrophic failure of the truss lattice. These continuum
e�ects are analogous, respectively, to yielding and ultimate failure in a material.

Because the local failure mode in trusses can be determined analytically, a purely analytical

failure theory for trusses can be constructed. In this section, a tensor that describes the strength

of a truss will be constructed, and failure analysis using this strength tensor will be discussed.

Having a tensor that represents the strength of a truss is advantageous because it allows strength

to be readily determined in alternate reference frames or under multiaxial stress states. Material

strength is not a tensor quantity, and, thus, analysis of failure in materials under multiaxial stress

can be accomplished only with approximate, semiempirical theories such as that proposed by

von Mises (e.g., as explained in ref. 14).

A strength tensor is constructed for trusses by converting the applied stresses into strains

using the compliance equations given in equations (19) and by analyzing these strains to
determine if the axial compression strain in any truss member has exceeded its critical elastic

buckling limit: 8>>>>>>>>>><
>>>>>>>>>>:

"11

"22

"33

2"23

2"13

2"12

9>>>>>>>>>>=
>>>>>>>>>>;

=

2
66666666664

s11 s12 s13 s14 s15 s16

s12 s22 s23 s24 s25 s26

s13 s23 s33 s34 s35 s36

s14 s24 s34 s44 s45 s46

s15 s25 s35 s45 s55 s56

s16 s26 s36 s46 s56 s66

3
77777777775

8>>>>>>>>>><
>>>>>>>>>>:

�11

�22

�33

�23

�13

�12

9>>>>>>>>>>=
>>>>>>>>>>;

(19a)

"ij = Sijkl�kl (19b)

Note that the compliance matrix in equation (19a) is simply the inverse of the sti�ness matrix

given in equation (1a). Therefore, the equivalent continuum compliances for a truss can be

determined from the equivalent continuum sti�nesses derived previously.

The continuum strains, de�ned in tensor form in equation (19b), can be transformed into

a new coordinate system described by the linear transformation tensor Tij . The resulting

transformed strains "0
ij
are

"0
ij
= TioTjp"op = TioTjpSopkl�kl (20)

The axial strain in any member of the truss is determined by de�ning an alternate coordinate

system with one of its axes aligned along the longitudinal direction of the member and evaluating

the normal strain along that axis. Assuming that the x-axis of the alternate coordinate system

is aligned this way, the axial strain in the member is given as

"011 = T1iT1jSijkl�kl = �i�jSijkl�kl (21)

where, as de�ned before, �i is the ith direction cosine of the member.

Failure occurs in a member if its axial strain exceeds a critical value determined for elastic

buckling. For the present study, the truss members are assumed to be slender and therefore

to buckle as Euler columns (ref. 15); thus, the critical strain for the nth group of members is

de�ned as

("crit)n = ��2
�
rn

ln

�2
(22)
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where rn is the radius of gyration and ln is the length of the members in the nth group. The
minus sign in equation (22) indicates that the critical strain is compressive. A fail-safe criterion

can be constructed from equations (21) and (22) by requiring the axial strains in all members

to be less than the critical value. This fail-safe criterion can be written as2
64(�i�j)nSijkl
��2

�
rn
ln

�2
3
75 �kl = [
kl]n�kl � 1 (23)

The bracketed term in equation (23) can either be thought of as a third-order tensor

representing the strength of the truss or as a collection of second-order tensors, each representing

the strength of a group of parallel members within the truss. The product of this strength tensor

and the second-order applied stress tensor �kl is a vector of constants, one for each of the groups

of parallel members. For elastic failure to occur, any one of these constants must be �1. Thus,
the critical stress at which failure occurs is the minimum stress at which one or more of these

constants is equal to 1.

Equation (23) represents a purely analytical failure theory for space-�lling trusses which can

be used with equal ease to analyze strength under multiaxial or uniaxial loading. Similarly,

strength in alternate coordinate systems can be readily handled by simply transforming the

collection of second-order strength tensors 
kl in the same way that a stress or strain tensor

would be transformed.

Equation (23) can be used, as described, to determine the strength of a given truss design.

Additionally, this equation is useful for tailoring the strength of a truss design because it is an

explicit relationship between the strength of individual members (i.e., rn=ln) and the continuum

strength of the truss. Strength tailoring is accomplished by varying the strength of individual

members to e�ect a desired change in the continuum strength of the truss. Note that because the

continuum compliances of the truss appear in equation (23), strength tailoring is not independent

of sti�ness tailoring. Consequently, tailoring the continuum sti�nesses of a truss also will change

its continuum strength characteristics.

In the remaining sections of this paper, examples of sti�ness and strength tailoring of uniform

trusses are presented. Truss geometries are selected for analytical simplicity, thus allowing

emphasis to be placed on developing an understanding of the analysis techniques.

Examples of Sti�ness and Strength Tailoring in Trusses

Equations (9), (17), and (23) provide the basis for analysis of the continuum sti�ness, density,

and strength of uniform space-�lling truss structures. By providing explicit relationships between

these continuum quantities and truss design parameters, these equations are e�ective tools that

enable e�cient tailoring of the truss sti�ness and strength characteristics. In this section, these

equations are applied to the analysis of two commonly used truss geometries and to the tailoring
of designs that have continuum isotropic and orthotropic behaviors.

Regular Octahedral Truss

The octahedral truss (also known as the tetrahedral truss, ref. 2, or the octet truss) is a

common geometry that derives its name from its members that connect to form octahedrons

and tetrahedrons. For the present study, a regular octahedral truss is considered which has all

identical members. A repeating cell from this truss is shown in �gure 3. The cell contains a

regular octahedron at its center (�g. 3(a)) and tetrahedrons connected to each of the eight faces

of the octahedron (�g. 3(b)). Space is �lled by translational replication of this cell in each of

the three coordinate directions.
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Because all members are identical, the octahedral truss has digonal symmetry axes along the
lines x = y; x = z; and y = z; trigonal symmetry axes along the lines x = y = z; �x = y = z;

x = �y = z; and x = y = �z; and quadragonal symmetry axes along the x-, y-, and z-axes.

This combination of symmetry axes indicates that the regular octahedral truss is a member of

rotational symmetry group j.

Calculation of continuum sti�ness and density. In table I, the behavior of the regular

octahedral truss is characterized by the three independent elastic constants c11; c12; and c66.

Equation (12) further reduces this number to two. However, these constants lack the relationship

c66 = (c11 � c12)=2; thus, the regular octahedral truss is not globally isotropic. Values for the
elastic constants can be determined from equations (7) and (9). Six di�erent groups of parallel

members exist in the octahedral truss, and all members are identical and assumed to have a

cross-sectional area of A. With the half-height of the regular octahedron de�ned to be L, as

shown in �gure 3, the length of each of the members is
p
2L. Then, the equivalent unidirectional

sti�ness for each of the six groups of parallel members is

(C0

1111)n =
EA
p
2L2

(24)

Substituting equation (24) into equation (9) along with the appropriate direction cosines for the

di�erent member groups, gives the result presented in equation (25) for the equivalent continuum

sti�ness matrix of the octahedral truss:

[cmn] =
EA

2
p
2L2

2
66666666664

2 1 1 0 0 0

1 2 1 0 0 0

1 1 2 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

3
77777777775

(25)

Notice that the continuum sti�nesses obey the restrictions in table I and equation (12).

Because all members in the regular octahedral truss are identical, the relative magnitudes of

the continuum sti�nesses for the octahedral truss are constrained by the proportions given in

the matrix of equation (25). Therefore, changing the axial sti�ness of the truss members can

only uniformly change all continuum sti�nesses.

The equivalent density of the octahedral truss can be calculated by substituting the sti�nesses

from equation (25) into equation (17). Rearranging and simplifying gives

�eq =
3
p
2�A

L2
(26)

Calculation of continuum strength. Before applying equation (23) to calculate the

continuum strength of the octahedral truss, the tensor form of the continuum compliances must

be determined from the sti�ness matrix given in equation (25). This process is done by inverting

the sti�ness matrix to get the compliance matrix and then employing the usual conversion from

matrix form to tensor form on the individual compliances (ref. 10). The only remaining unknown

truss parameter is the radius of gyration of its members.
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Suppose that the strength of the octahedral truss under a continuum uniaxial compression
is required. Assuming this stress to have magnitude �ult and to be applied along a vector given

by the spherical coordinates � and ' (as shown in �g. 4), the applied continuum stress tensor

can be written as

[�kl] = ��ult

2
64

(sin2 � cos2 ') (sin2 � sin' cos') (sin � cos � cos')

(sin2 � sin' cos') (sin2 � sin2') (sin � cos � sin')

(sin � cos � cos') (sin � cos � sin') (cos2 �)

3
75 (27)

The compression strength is determined by substituting equation (27) into equation (23).

After simpli�cation, equation (23) reduces to a set of six scalar equations (n = 1 to 6), one

for each group of parallel members in the truss. Each of these equations can be solved for the

value of �ult which is necessary to cause Euler buckling in the corresponding member. The

minimum value of �ult determined from these six equations is the lowest uniaxial compression

stress at which local buckling occurs within the truss lattice. This value is de�ned as the uniaxial

compression strength for the given set of � and '.

A three-dimensional plot of the uniaxial compression strength of the octahedral truss is

presented in �gure 4 for a range of � and ' from 0� to 90�. Because of symmetry, the strength

in all other quadrants is identical. A factor of 2 variation exists in the compression strength of

the lattice, and, not surprisingly, the directions of minimum strength are coincident with the

directions of the members of the truss. Maximum strength occurs for loading along the three

coordinate axes and along the line x = y = z. The value of the minimum strength is

�ult =
EA�2r2

2
p
2L4

(28)

Because all members are identical, changing the strength of the members would change the

vertical scale of the strength plot given in �gure 4, but it would not change its shape. Introducing

member-speci�c properties will alter the equivalent continuum sti�ness and strength; however,

this would destroy the geometric symmetry of the lattice and introduce additional independent

sti�nesses. In the following section, a truss based on the octahedral lattice is designed for

isotropic sti�ness and nearly isotropic strength.

Isotropic Warren Truss

The lattice of the regular octahedral truss is modi�ed by adding members that connect all six

vertices of each octahedron to the geometric center of the octahedron, as shown in �gure 5(a).

The resulting arrangement of new members forms a cubic lattice within the octahedral lattice,

with the edges of the cube lying parallel to the three coordinate axes and each cube containing

a regular tetrahedron, as shown in �gure 5(b). The members of the cubic lattice are of length L,

whereas the members of the original octahedral lattice are of length
p
2L. This truss geometry

is often referred to as the Warren truss because its lattice arrangement is similar to that of a

common two-dimensional truss of the same name. Similar to the regular octahedral truss, the

Warren truss is a member of symmetry group j, and it has two independent elastic constants c11
and c12. However, unlike the octahedral truss, the Warren truss has two di�erent members whose

relative sti�nesses and strengths can be tailored to a�ect the continuum behavior of the truss

without violating its geometric and elastic symmetry. In this section, it is demonstrated that

the continuum strength and sti�ness properties of the lattice can be tailored by redistributing

material within the truss lattice. The material is transferred from the octahedral lattice members

12



to the cubic lattice members so that the continuum sti�nesses become isotropic. Also, the relative
strengths of the members are tailored to reduce variations in continuum compression strength.

Continuum sti�ness tailoring. The Warren truss is composed of nine di�erent groups of

parallel members. Three groups correspond to the cubic lattice, and six groups correspond to the

octahedral lattice. The continuum sti�nesses for the Warren truss can be determined by adding

the contributions because of the cubic lattice members to the result presented in equation (25)

for the octahedral lattice. The cross-sectional areas of the members in the cubic lattice and

the octahedral lattice are de�ned to be Ac and Ao, respectively. Thus, the equivalent uniaxial

sti�nesses of the three groups of parallel cubic lattice members are given by

(C0

1111)n =
EAc

L2
(29)

Substituting equation (29) into equation (9), along with the appropriate direction cosines,

and adding the result to that presented in equation (25) gives

[cmn] =
EAo

2
p
2L2

2
66666666664

2 + 2
p
2�c 1 1 0 0 0

1 2 + 2
p
2�c 1 0 0 0

1 1 2 + 2
p
2�c 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

3
77777777775

(30)

where �c is de�ned as Ac=Ao. If �c is equal to 0, the cross-sectional area of the cubic lattice

members is 0, and equation (30) is identical to equation (25). As before, an equivalent density
can be calculated using equation (17) and the sti�nesses presented in equation (30). The result

is

�eq =
(3
p
2 + 3�c)�Ao

L2
(31)

To study the e�ects of redistribution of material within the truss, the total amount of material

must remain constant. For convenience, the density of the Warren truss is required to be the

same as that of the regular octahedral truss by setting equation (26) equal to equation (31).

The result is

Ao =
A

1 + �c=
p
2

(32)

where A is the cross-sectional area of the members in the regular octahedral truss that was

analyzed previously. Equation (32) de�nes the relation between the cross-sectional areas of

the cubic and octahedral lattice members within the Warren truss; this relation must be valid

to keep the equivalent density of the Warren truss equal to that of the regular octahedral

truss. Substituting equation (32) into equation (30) gives explicit equations for the continuum

sti�nesses of the Warren truss in terms of the member area ratio �c. To better understand the

e�ects of redistribution of material, the sti�ness components in equation (30) are translated into

equivalent Young's modulus, Poisson's ratio, and shear modulus, as follows:

Eeq =
(c11 + 2c12)(c11� c12)

c11 + c12
=

4EA(1 + 2
p
2�c)

2
p
2L2(3 + 2

p
2�c)

(33)
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�eq =
c12

c11 + c12
=

1

3 + 2
p
2�c

(34)

Geq = c66 =
EA

2
p
2L2(1 + �c=

p
2)

(35)

These sti�ness components are plotted in �gure 6 as functions of the area ratio �c. For

�c = 0, no material has been redistributed from the octahedral lattice to the cubic lattice, and

the sti�nesses represent those of the octahedral truss. As �c is increased, material is moved from

the octahedral lattice to the cubic lattice, and this process is accompanied by an increase in the

equivalent Young's modulus and decreases in the equivalent Poisson's ratio and the equivalent

shear modulus. As seen from equations (34) and (35), when �c becomes large, both the Poisson's

ratio and the shear modulus approach 0. This e�ect is consistent with the fact that the cubic

lattice of members is not a kinematically stable truss by itself. Because of this, considering

designs with very large values of �c is unreasonable.

For the Warren truss to be globally isotropic, the sti�nesses must satisfy the following

condition:

Geq =
Eeq

2(1 + �eq)
(36)

Substituting the expressions from equations (33) to (35) into equation (36) shows that �c must

be equal to 1=(2
p
2) for isotropy. Substituting this value of �c into equation (32) gives a value

of 4A/5 for the cross-sectional area of the members in the octahedral lattice and, consequently,

a value of
p
2A=5 for the cross-sectional area of the members in the cubic lattice. Thus, if 1/5 of

the material that was originally in the members of the octahedral truss is redistributed into the

members of the cubic lattice, the resulting truss behaves isotropically. The isotropic values for

the equivalent Young's modulus, Poisson's ratio, and shear modulus are

(Eeq)iso =
EA
p
2L2

(�eq)iso =
1

4
(Geq)iso =

p
2EA

5L2
(37)

Notice that the equivalent isotropic Poisson's ratio is 1/4, which is the value that was predicted

earlier for globally isotropic trusses. Also, calculating the ratio of the equivalent isotropic Young's

modulus (eq. (37)) to the equivalent density (eq. (26)) gives the result predicted in equation (18)

for globally isotropic trusses.

Continuum strength tailoring. Applying the same procedure used for the octahedral

truss, the continuum strength of the isotropic Warren truss can be determined and the e�ects

on continuum strength of varying the strength of the truss members can be evaluated. For

comparison, the same continuum stress tensor given in equation (27) is also applied to the

Warren truss. Two cases are analyzed. In the �rst case, all members in the truss are assumed to

have the same radius of gyration, and in the second case, all members are assumed to have the

same buckling load. The �rst case is representative of a truss with thin-walled members of equal

cross-sectional diameter. The second case illustrates the e�ects of tailoring individual member

buckling strengths on the continuum strength of the truss.

For the �rst case, the radius of gyration of all members is r, and the lengths of the members

are L for the cubic lattice and
p
2L for the octahedral lattice. These values, the continuum

compliances determined from equation (30), and the appropriate direction cosines are substituted

into equation (23). The result is a set of nine scalar equations, one for each group of parallel
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members in the truss, from which the minimum value of �ult is determined for the given set of
� and '.

A three-dimensional plot of the uniaxial compression strength of the isotropic Warren truss

is presented in �gure 7 for the same range of � and ' as in �gure 4. The shape of the strength
plot is similar to that of the octahedral truss, and, despite the redistribution of material from

the octahedral lattice, the values and the directions of the minimum and maximum strength are

the same as those for the octahedral truss. The directions and maximum strength are coincident

with the directions of the cubic lattice members, and the directions of minimum strength are

coincident with the directions of the octahedral lattice members. Requiring that all members

have the same radius of gyration causes the cubic lattice members to have twice the buckling

load of the octahedral lattice members because of the di�erence in their lengths. This e�ect

causes a factor of 2 variation in the continuum strength.

Variation in truss strength might not be a concern for many design applications; however, if it

is desirable to have a truss that behaves isotropically in sti�ness, it is probably also desirable for

the truss to behave isotropically in strength. By tailoring the buckling loads of the cubic lattice

members to be the same as those of the octahedral lattice, the variations in continuum strength

can be signi�cantly reduced. For this case, the radius of gyration of the cubic lattice members is

reduced to r=
p
2 so that the buckling loads of all members are the same. A plot of the resulting

continuum compression strength is presented in �gure 8. Although some variation still exists in

the continuum strength, the magnitude of the variation has been signi�cantly reduced.

The use of three-dimensional strength plots is particularly helpful for developing strength

tailoring rules because these plots provide visualization of the correlation between member

orientations and continuum strength variations. Without this correlation, developing strength

tailoring rationale for the members would be di�cult. The example presented is fairly simple

because of the isotropic sti�ness behavior and geometric symmetry of the Warren truss.

Therefore, the correlation between variations in continuum strength and the orientation of

members is fairly obvious. However, for trusses with less geometric symmetry or more complex

applied stress tensors, this correlation might not be apparent without the use of a three-

dimensional strength plot.

Orthotropic Warren Truss

Many applications exist for large truss structures with orthotropic, rather than isotropic,

continuum properties. For orthotropic applications, the requirements on continuum sti�ness

and strength are much higher in one direction than in others. For example, many applications

involve beam-like trusses that primarily carry bending and torsional loads. In these cases, the

longitudinal (along the length of the beam) sti�ness and strength requirements are much higher

than the transverse sti�ness and strength requirements. Therefore, using a truss with orthotropic

continuum properties is probably more e�cient than using one with isotropic properties.

Table I shows that trusses of symmetry groups i and j are not candidates for orthotropic

design because their sti�nesses (and strengths) must be the same in all three coordinate

directions. Trusses of all other symmetry groups are candidates for orthotropic tailoring because

their properties in the z direction can di�er from those in either the x or the y direction. The

truss presented in �gure 9 is a variation of the Warren truss design that is a member of symmetry

group f and is, thus, a possible candidate for orthotropic design. The lattice arrangement of

this truss is identical to that of the Warren truss except the length of the repeating cell in

the z direction di�ers from that in either the x or the y directions by the proportion �. This

section will show the results of applying sti�ness and strength tailoring techniques to generate

orthotropic designs that have high sti�nesses and strengths in the z direction but which have

the same equivalent density as that of the isotropic Warren truss.
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Calculation of continuum sti�nesses. The orthotropic Warren truss shown in �gure 9 has
four di�erent members. The cross-sectional areas for members of groups 1 and 2 are de�ned as

�1A and �2A, respectively, where �1 and �2 are variable area ratios and A is the cross-sectional

area assumed earlier for the members in the octahedral truss. The equivalent uniaxial sti�nesses

for groups of these members are determined using equation (7), and the results are given in

equations (38) and (39):

(C0

1111)1 =
�1EA

L2
(38)

(C0

1111)2 =
�2EA(1 + �2)1=2

2�L2
(39)

For simplicity, members of groups 3 and 4 are assumed to be the same as those in the isotropic

Warren truss. Therefore, the cross-sectional area of members of group 3 is
p
2A=5, and the

cross-sectional area of members of group 4 is 4A=5. The equivalent uniaxial sti�nesses are the
same for member groups 1 and 2, and the value of this sti�ness is given in equation (40):

(C0

1111)3 = (C0

1111)4 =

p
2EA

5�L2
(40)

Substituting these uniaxial sti�nesses and the appropriate transformation tensors into equa-

tion (9) and simplifying gives the following values for the nonzero continuum sti�nesses:

c11 = c22 =
EA

�L2

"
2
p
2

5
+

�2

(1 + �2)3=2

#
(41)

c12 = c66 =

p
2EA

5�L2
(42)

c13 = c23 = c44 = c55 =
EA

�L2

�
�2�2

(1 + �2)3=2

�
(43)

c33 =
EA

�L2

�
�1� +

2�4�2

(1 + �2)3=2

�
(44)

Note that these sti�nesses obey the conditions presented in table I and equations (12) and (13)

for trusses of symmetry group f . Equations (41) through (44) are explicit functions of the three

remaining design parameters �; �1; and �2. Therefore, these equations can be used directly to

determine how variations in the design parameters a�ect the orthotropic characteristics of the

truss.

An equivalent density can be calculated for the orthotropic Warren truss by substituting the

sti�nesses from equations (41) through (44) into equation (17). The result is

�eq =
�A

�L2

"
6
p
2

5
+ �1� + 2(1 + �2)1=2�2

#
(45)
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Setting equation (45) equal to equation (26) ensures that the equivalent density of the orthotropic
Warren truss is the same as that of the regular octahedral truss and the isotropic Warren truss.

The resulting expression can be rearranged to give the following condition on the area ratio �2:

�2 =
(3
p
2� �1)� � 6

p
2=5

2(1 + �2)1=2
(46)

Equation (46) reduces the set of independent design parameters to the repeating cell length ratio

� and the cross-sectional area ratio �1.

An equivalent z-direction Young's modulus can be determined for the orthotropic Warren

truss by inverting the s33 component of the compliance matrix as follows:

(Eeq)z =
1

s33
(47)

Performing this calculation gives the result

(Eeq)z =

p
2EA

�
15�1=

p
2 + 18�3 � 5(�1=

p
2� 6�=5)2

�
L2(15� 5�1=

p
2 + 12� + 6�3)

(48)

To determine the improvement in sti�ness in the z direction, the modulus given in equation (48)

is divided by the Young's modulus of the isotropic Warren truss given in equation (37). The

resulting normalized z-direction Young's modulus is

(Eeq)z

(Eeq)iso
=

30�1=
p
2 + 36�3 � 10(�1=

p
2� 6�=5)2

15� 5�1=
p
2 + 12� + 6�3

(49)

A three-dimensional plot of the normalized z-direction Young's modulus is presented in
�gure 10 for ranges of � and �1. The isotropic Warren truss is characterized by �1 =

p
2=5

and � = 1; this point on the plot corresponds to a normalized z modulus equal to 1. As �1
increases, for a �xed value of �, the material transfers from members of group 2 to members

of group 1 (see �g. 9). This material transfer causes an increase in the z modulus because the

group 1 members are oriented parallel to the z direction. As � increases, for a �xed value of �1,

the number of group 3 and group 4 members in a given volume decreases. To maintain constant

density, material is redistributed among group 1 and group 2 members, thus also causing an

increase in the z modulus.

Calculation of continuum z-direction strength. The strength of the orthotropic Warren

truss is calculated for a uniform continuum compression applied in the z direction. This applied

stress tensor is given in equation (50) and is substituted into equation (23):

[�kl ] =

2
64
0 0 0

0 0 0

0 0 �(�ult)z

3
75 (50)

Because their alignment is parallel to the z direction, members in group 1 buckle at lower

continuum stresses than the remaining members in the truss. (This result was veri�ed through
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additional analysis not presented herein.) Thus, considering only buckling in group 1 members,
equation (23) can be reduced to equation (51), where r1 and l1 are the radius of gyration and

length of members in group 1:

(�ult)z =
�2r21
l21s33

(51)

De�ning the radius of gyration of these members to be r and their length to be �L (see

�g. 9) and substituting the result from equation (47) gives the following expression for the

z-direction compression strength of the orthotropic Warren truss:

(�ult)z =
�2r2

�2L2
(Eeq)z (52)

The z-direction compression strength of the isotropic Warren truss can be determined from

�gure 7 (� = 0�), and this value can be used to normalize equation (52). The result is

(�ult)z
(�ult)iso

=
(Eeq)z

�2(Eeq)iso
(53)

Unlike the z modulus, the factor of �2 in the denominator of equation (53) causes the

z-direction strength to decrease with increasing �. However, it is apparent that both modulus

and strength have the same variation with �1. A three-dimensional plot of the normalized

z-direction compression strength is presented in �gure 11 for comparison with the modulus plot

in �gure 10. Because both modulus and strength increase as �1 increases, selecting the largest

practical value for �1 is best. As an example, if the cross-sectional areas of all members within the

truss are constrained so that they di�er by no more than a factor of 5, the maximum allowable

value for �1 would be
p
2. Assuming this value for �1 gives the following for all the member

cross-sectional areas:

A1 =
p
2A A2 =

(10� � 6)A

5(2 + 2�2)1=2
A3 =

p
2A=5 A4 = 4A=5 (54)

A plot of the normalized z-direction strength and modulus is presented in �gure 12, assuming

�1 is equal to
p
2. As explained, extending the length of the Warren truss cell in the z direction

(increasing �) increases the sti�ness while decreasing the strength of the truss. Therefore, the

optimum length for the truss cell depends on the relative importance of continuum strength and

continuum sti�ness in the design.

Concluding Remarks

A deterministic procedure has been presented for tailoring the continuum sti�ness and

strength of uniform space-�lling truss structures through the appropriate selection of truss

geometry and member sizes (i.e., exural and axial sti�nesses and length). A key aspect of

this procedure is symbolic manipulation of the equivalent continuum constitutive equations to

produce explicit relationships between truss member sizes and continuum strength and sti�ness.

To help select an appropriate truss geometry for a given application, a �nite set of possible

geometric symmetry groups which characterize uniform trusses has been presented, and the

implied elastic symmetry associated with each geometric symmetry group has been identi�ed.

Equivalent continuum sti�ness has been determined using an existing technique assuming

that the displacement �eld within a truss is single-valued and the members within a truss

carry only axial load. Based on these assumptions, generally anisotropic trusses are shown
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to be characterized by 18 independent elastic constants rather than 21 as is normal for a
generally anisotropic solid. This result guarantees that all three-dimensional trusses that behave

isotropically, in a continuum sense, must have an equivalent Poisson's ratio of 1/4. Furthermore, a

direct relationship was derived between an anisotropic sti�ness-to-density ratio of a truss and the

sti�ness-to-density ratio of its parent material. Using this relationship, the equivalent Young's

modulus-to-density ratio of any isotropic three-dimensional truss is shown to be exactly 1/6 times

the modulus-to-density ratio of the parent material of the truss.

A purely analytical failure theory has been developed for trusses by de�ning failure as the

elastic buckling of any member within the truss lattice. This theory allows the construction of a
strength tensor that simpli�es failure analysis under multiaxial stress and alternate coordinate

systems.

To illustrate the application of these analysis techniques, truss designs have been developed

which behave isotropically and orthotropically under continuum loading. In these examples,

sti�ness tailoring has been accomplished through redistribution of material among the truss

members, and strength tailoring has been accomplished by varying the relative buckling strengths

of the members. This deterministic approach to the analysis and tailoring of truss behavior can
signi�cantly enhance the understanding of relationships between the design parameters and the

continuum elastic behavior of trusses. Ultimately, this improved understanding should enable

the creation of more e�cient truss designs.

NASA Langley Research Center

Hampton, VA 23665-5225
March 6, 1992
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Table I. Elastic Characteristics of Rotational Symmetry Groups

Rotational Independent
symmetry elastic
groupa Conditions on continuum sti�nesses constants

No symmetry None 21

a c14; c15; c24; c25; c34; c35; c46; c56 = 0 13

b Same as group a with c16; c26; c36; c45 = 0 9

c c16; c26; c34; c35; c36; c45 = 0; c11 = c22; c44 = c55; 7
c13 = c23; c14 = �c24 = c56; c15 = �c25 = �c46;

c66 = (c11 � c12)=2

d Same as group c with c15; c25; c46 = 0 6

e Same as group a with c36; c45 = 0; 7
c11 = c22; c44 = c55; c13 = c23; c16 = �c26

f Same as group e with c16; c26 = 0 6

g Same as group c with c14; c15; c24; c25; c46; c56 = 0 5

h Same as group g 5

i Same as group b with c11 = c22 = c33; 3
c12 = c13 = c23; c44 = c55 = c66

j Same as group i 3

aSee �gure 2.
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Figure 1. Large uniform trusses generated from repeating cell.

Figure 2. Possible rotational symmetry groups.

(a) Regular octahedron.

(b) Complete repeating cell with regular tetrahedron.

Figure 3. Repeating cell for regular octahedral truss.

Figure 4. Strength of octahedral truss under uniaxial compression.

(a) Members added to octahedral lattice.

(b) Resulting cubic lattice.

Figure 5. Repeating cell for Warren truss.

Figure 6. Sti�ness tailoring of Warren truss; �c = Ac=Ao.

Figure 7. Uniaxial compression strength of isotropic Warren truss. All members have same radius of gyration.

Figure 8. Variation in strength diminished by tailoring all members to have same buckling load.

Figure 9. Repeating cell for orthotropic Warren truss.

Figure 10. Variation in z-direction Young's modulus with � and �1.

Figure 11. Variation in z-direction strength with � and �1.

Figure 12. Variation in z-direction modulus and strength with cell length.
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